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Lévy flights from a continuous-time process
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Lévy flight dynamics can stem from simple random walks in a system whose operationghtiméer of
stepsn) typically grows superlinearly with physical time Thus this process is a kind of continuous-time
random walk(CTRW), dual to the typical Scher-Montroll model, in whichgrows sublinearly with. Models
in which Levy flights emerge due to a temporal subordination allow one easily to discuss the response of a
random walker to a weak outer force, which is shown to be nonlinear. On the other hand, the relaxation of an
ensemble of such walkers in a harmonic potential follows a simple exponential pattern, and leads to a nhormal
Boltzmann distribution. Mixed models, describing normal CTRW's in superlinear operational time smd Le
flights under the operational time of subdiffusive CTRW'’s lead to a paradoxical diffusive behavior, similar to
the one found in transport on polymer chains. The relaxation to the Boltzmann distribution in such models is
slow, and asymptotically follows a power law.
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I. INTRODUCTION the particle’s behavior is diffusive, with a diffusion coeffi-

cient D=a?/2r. If the corresponding moment diverges, the

Random walk processes leading to subdiffusive or superparticle’s behavior becomes subdiffusive, WithP(t) )yoct?,
diffusive behavior are adequate for describing various physiwhere w<1 depends on the PD§( 7). Subdiffusive behav-
cal situations. Thus the continuous-time random walkior js indicated by a vanishing of the diffusion coefficidt
(CTRW) model of Scher and MontrolL] was a milestone in  ijthin this scheme of seems impossible to obtain any type
the understanding of photoconductivity in strongly disor-of superdiffusive behavior unless one allows for infinitely
dered and glassy semiconductors, whilery-glight models  |ong jumps with(a2)— . Superdiffusive behavior is indi-
[2] are adequate for a description of transport in heterogegated by divergence of the diffusion coefficiedt If (a?)

neous catalysig3], self-_dlffusmn in micelle systempst], re- remains finite, this can be the case only & vanishes. Since
actions and transport in polymer systems under conforma-

tional motion[5], transport processes in heterogeneous rockg~ 9 and 7=[o7p(7)d7, a vanishing of the mean waiting
[6], and the behavior of dynamical systefd. Closely re- Umeé means thap(7) = &(7)—marginal, degenerate situa-
lated models appeared in a description of economic tim&©n- , ,

series[8]. Lévy-related statistics were observed in hydrody- ©On the other hand the consideration presented above
namic transporf9], and in the motion of gold nanoclusters Shows only that the waiting-time distribution is not an ad-
on graphitg 10]. Mixed models were proposed , in which the €duate tool for a description of supgrdﬁfuswe CTRW's.. In
slow temporal evolution(described by a Scher-Montroll What follows we show that superdiffusive CTRW's with
CTRW) is combined with the possibility of 18 jumps, so bounded step lengths are just as likely to occur as subdiffu-

that in general both subdiffusion or superdiffusive behavioSVé Ones. Our considerations will be rather formal, and do
can arisd11]. not follow from any particular physical model. On the other

The continuous-time random walks first introduced byhand, the fact that hey flights can stem from a process
Montroll and Weis§12] correspond to a stochastic model in Subordinated to simple random walks has many important
which steps of a simple random walk take place at titpes IMmPplications. Thus, as we proceed to show, the fast dynamics
following some random process with non-negative increOf @ free process can coexist in such models with simple
ments: 7;=t;—t;_;=0. In a mathematical language, one exponential relaxation to a normal Boltzmann equilibrium
states that a CTRW is a process subordinated to a randog@istribution, if the behavior of an ensemble of random walk-
walk under the operational time defined by the prodegs  ers under a restoring force is considered. This shows that the
It is typically thought that a CTRW scheme alone cannotrelation between Ley dynamics and the nonextensive ther-
describe any superdiffusive process, so that the introductiomodynamics described by nonclassical entropy functions is
of very long jumps is an inevitable part of building a model much looser than typically assumed.
leading to a superdiffusive behavior. The combination of superdiffusive kg flights with a

Let us first discuss a typical CTRW approach. We con-typical CTRW operational time leads to a paradoxical diffu-
sider a one-dimensional situation under which a particlesion behavior, having some parallels to transport in polymer
from time to time makes a jump to a neighboring lattice sitechains. Moreover, the existence of a subordination model
separated from the initial one by a distareeThe timeT  |eading to Ly flights can be useful in understanding the
between the two jumps is distributed according to somesatistical implications of the processes described by frac-
waiting-time distribution, represented by the probability den-tional generalizations of diffusion and Fokker-Planck equa-
sity function(PDF) p(7). If the mean waiting timer exists, tions[13-15.

1063-651X/2000/6@)/01110410)/$15.00 63011104-1 ©2000 The American Physical Society



I. M. SOKOLOV PHYSICAL REVIEW E 63011104

This paper is organized as follows: In Sec. Il we discusgump, and a process described by a finite density of events is
general properties of subordinated random processes. b normal diffusive one. The divergence of a mean waiting
Secs. lll and IV processes subordinated to symmetric antime (as in a Scher-Montroll CTRWcorresponds to a van-
asymmetric random walks are considered, these leading tshing density. On the other hand, if one considers a strongly
symmetric and asymmetric kg flights. The dualism be- fluctuating densityp(t) whose first moment diverges, the
tween the Ley flights and the Scher-Montroll CTRW is dis- mean waiting time vanishes, and a process that subordinates
cussed in Sec. V. Sections VI and VIl discuss the models random walk process under such an operational time can be
leading to paradoxical diffusion behavior. The relaxation tosuperdiffusive. At longer times, the distribution of the num-

equilibrium is considered in Sec. VIILI. ber of events tends to one of théuyestable laws: the typical
number of events can grow superlinearly in time. A simple
Il. SUBORDINATION OF RANDOM PROCESSES example of such a process was already known to Feller; see

. Chap. X 7 of Ref[16]. He considered a process subordinated
As already mentioned, a Scher-Montroll CTRW processyg simple random walks under the operational time governed

is a simple random walk whose steps take place at times by a fully asymmetric [ey stable law of index 1/2. The
governed by a random process with non-negative indepentorresponding PDF at timieis given by

dent increments, so that

= 1 x|t t2
P(X,1)= 2 Pru(x,n)Ps(1), (1) Pix.t= f 0 —mexrﬂ( - z) —J;nyzexp( B z) dn
where Pgry(X,n) is a probability distribution to find a ran- B t 4
dom walker at poink after n steps(i.e., the binomial distri- - a(2+x2) )

bution), and p,(t) is the probability of making exactly
steps up to time. For botht andn large, when the binomial i.e., it is a Cauchy [ey-flight

distribution can be approximated by a Gaussian one, and Let us now discuss a simple analogy describing the rela-

when the corresponding sum can be changed to an integrq,On between the Scher-Montroll CTRW and weflights.

Eq. (1) reads This analogy makes clear many of the findings we are going
2 to discuss below. Imagine a physical clock producing ticks
F 1 p< X ) following with fr 1, which the behavior of
P(x,t)= exp — =— | p(n,t)dn. ) g equency 1, which govern the behavior of a
0 27N 2n random walker. Imagine a switch situated at 0, so that, re-
turning to the origin, the walker can trigger some physical
In a classical Scher-Montroll CTRW)(n,t) corresponds to  process[the analogy with the Glarum model of relaxation
a random process in whiahtypically grows sublinearly in.  (see Ref[17]), is evideni. The times between the subse-
Thus the overall process is subdiffusive. quent returns are distributed according to a fully asymmetric
Note that the description of the CTRW process given byl evy stable law of index 1/2 used in a previous example.
Eq. (2) is an example osubordination see Sec. X7 of Ref. Now imagine another random walker performing its motion
[16]: If {X(T)} is a Markov process with continuous transi- (a step per physical unit timendependently from the first
tion probabilities and T(t)} a process with non-negative in- one. Imagine a movie camera, taking frame-per-frame pic-
dependent increments, th€K(T(t))} is said to subordinate tures of the positions of this second random walker at the
to {X(t)} using the operational tim&. In this case, moments when the first walker is at the origin and thus trig-
gers the switch. Watching the movie taken by the camera, we
immediately recognize that the second walker performs the
Cauchy Lay flights. Imagine that a clock is posed in a frame
and also filmed. In this case its image will show exactly the
In what follows we call the integral transforfitg. (3)] a  operational time of the system; the spectator's watch mea-
subordination transformation, changing from time s¢atea  sures the physical time. Imagine an opposite situation: the
time scaleT. For example, in the Scher-Montroll case the first walker triggers the motion of the second one, and the
operational time of a system is given by the number of stepsamera is triggered by the physical clock, as a normal movie
of the RW, and is a random function of the physical time camera is. The process we recognize at the film is then the
whose typical value grows sublinearly tn Scher-Montroll CTRW. We can also take a Scher-Montroll
The operational time can also grow superlinearly vtith movie using another trickwhich cannot be performed in a
Such a process can not be described by a waiting-time digeal time, but needs a record of return timdset us take a
tribution, and needs a complimentary description. Let ugecord of subsequent return times of a first random walker
consider a random process, where deasityof events fluc-  (numbersy, n,, .. .), andtrigger our camera in such a way
tuates strongly. Let us subdivide the time axis into intervalghat it makesn,; frames during the first second, frames
of durationAt, and let us consider the numbeof jumping  during the second one, etc. If we film a normal random
events within each interval. The valye=n/At defines the walker with a camera prepared in such a way, the movie will
density of jump events. Now, if the mean density of eventsshow us a Montroll-Weiss CTRW. An image of the physical
exists, its inverse gives us exactly the mean waiting time of &lock will again show the operational time of the system, and

P(x,t)= j:PX(x,T)pT(T,t)dT. 3
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again, looking at his watch, the spectator can measure the Ill. SYMMETRIC LE VY FLIGHTS FROM CTRW'S

physical time between two events.

Let i d by ret ¢ q Let us first concentrate on the symmetric random walk
€l us use our camera, triggered by returns ot a random,qq ) gt ys consider a random process in which the number
walker to film other processes taking place in the outer

. o E f i i i foll f -
world. The film, which is watched afterwards at a constant0 events per given time is unbounded and follows, for ex

. i X . ample, a power-law distributiop,,(t)=tn~1¢, with 0<a
speed, shows_uspi)_ssmleNorld. The causality relations and <1 (this corresponds to the typical number of events scaling
thermodynamical time arrow are those of our usual world.

1o ¢ H H
On the other hand, a movie of a world undergoing a continuf’lsnoct ). Let us find the asymptotic behavior B, 1) for

ous evolution, in which fatura non facit saltus’holds, will tlarge. Since the jumps during different intervals are uncor-
’ : " " ! related, the PDF oh for longer times converges to a fully

show us a revolutionary world of “great leaps” and abrupt asvmmetric Lgv stable law

changegbut following the same logics of developmgnthe y y

second cameréed by a prescri_bed sequenc)_ewill show us p(n, )=t~ YeL(n/t¥: @, ), (6)

a world of almost full stagnation seldomly interrupted by a

bounded,_ Iopal movement, a world develqping ina sllow ti_mevvith the asymmetry parameter=— a [here the values of
of old Asiatic despoty. We shall keep this analogy in mind, — -, correspond to the strongly asymmetric PDF that
when dlscussm_g the physical |mpI|cat|0ns of subord_lnatlon.vanish identically for large positivénegative x values,
Let us consider a system which evolves according t0 §hijle y=0 corresponds to symmetric distributions; the no-
Markovian dynamics, and whose state tends to a normglyion is from Ref[16]]. Note that the Fourier transforms of

Boltzmann equilibrium under relaxation. In a system under gy _stable laws are known: up to the translation and scaling
action of outer forces, the transition probabilities between thep(k t) is equal to

states of the systeffsitesi between which the random walk

takes placge which are characterized by their energles f(x)=exd — | |2 ™" 7
are not independent. They are connected through the corre-

sponding Boltzmann factors, so that in equilibrium during(for 0<a<2, a#1). The PDF is a real function, thus
any period of timeAt the mean numbers of forward and f(x)=f*(— k). The corresponding function is analytical ev-

bacléy\{ard jumps between any two siteand j fulfill the  erywhere except fok=0, so that the PDF is given by
condition

1 * ; ONE
L(X;a,'y)z ;ReJ e*lxé‘*{ e Y/ng. (8)
0
n”(At)/n“(At)=eX;{(E,—EJ)/kT], (5)
From Eq.(8) the series expansions fo(y; «, y) follow, see
Sec. XVII 6 of Ref.[16]. In the casex<<1 one can move the

path of integration to the negative imaginary afsmce the
integrand tends to zero when lfn» — due to the domi-

wherek is the Boltzmann constant anfl is the system’s
temperature. Conditiofb) guarantees a detailed balance in
equilibrium, independent of what the real dynamics of & SySpance of the linear termwhich then allows for elementary
tem is. For simple RW’s, where only transitions between th%ntegration after a Taylor expansion of eAg(). For 1<a
neighboring states are allowed, corresponding transition rates ,, this dominance is no longer the case, but the integrand

with respect to the operational time of the system can bgyy anishes for Im¢— — < in the case of symmetric distri-
introduced. For a random walker moving under the i”ﬂuenc%utions while  €i|¢])¥= || cosrl2)a—i sin(m/2)a]

of a weak constant force the probabilities of forward and for 1< a<2. Thus the series which represents/ye

backward jumps per unit times., gndw, are connec,ted by distributions for < @< 1, and also a symmetric kg distri-

w, /w_=expFa/kT). The Markovian nature of RW’s then bution for 1< <2, y=0, reads

leads to the fact that the valueswif andw_ do not depend ' '

on whether the system is in equilibrium or not. Fosmall, 12 T(ka+1)

one can take, sayw, =Wp(1+Fa/kT) and w_=wg(1 L(Y;a,y)=— 2, (_1)k—I

—Fa/kT) with wy= 1/27. 7Yy k=1 k!
Note that subordination, describing a transition from a

physical time to an operational time of the system, does not % sin

change its equilibrium properties. Such subordination can be

considered as a random modulation of the transitionwgte )

by some independent proce@ay closing and opening the (in the last case the series does not converge absolubely

channely and is fully irrelevant for the thermodynamitie. ~ 9eneral, the Lw-stable laws for ¥ a<2 are given by an-

thermostaticsof the system. On the other hand, it strongly Other expansion,

influences its kinetics, so that a question can be posed about

k K
5 (- a>)y ©

what kinds of kinetics are compatible with relaxation to &, . 1 > (_1)k1“(1+ k/a)sin k_7T( —a) |y
normal Boltzmann distribution under an arbitrary subordina- Yy =] k! 2 e y o
tion transformation of time. We address this question in Sec. (10)
VIII, after the free diffusion properties of superdiffusive

CTRW's are discussed. which also holds for asymmetric laws.
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One can easily obtain the form of thedistributions by  given by an asymmetric vy law of index a<1. To see
immediate integration: using ER) and a scaling form of a this, consider the characteristic functions of both sides of Eq.
Lévy distribution, (16), and use Eq(15).

=1 x? n dn exp(—A|k|“ﬁ)=jwe*““B”L(n'a —a)dn,  (17)
p(X,t)ZJO \/ﬁE‘X%—%)L(m,O{,—a)E. 0

11 see Sec. X7 of Ref16]. Equation(15) corresponds to a
special case 08=2 of Eq.(17). The distributions_(n;«,
—a) thus coincides with inverse Laplace transforms of
stretched exponentials. For example, fidn;1/2,—1/2) one
readily obtains:

Using Eq.(9) and performing a term-by-term integration, we
arrive at a series of integrals of the form

()= f Tl e (R0 g

V2w

For an integral of thekth term in Eq.(9), we haveu=1
+ak . Let us first concentrate on the cas€ 8<1. Using

t t2

12—
E) I'(p—1/2). (12 (18)
which differs only by a scale for the time-unit from a distri-

bution used in the example of EGl).

well-known relations for thel™ function, I'(z+1)=2zI"(2) IV. ASYMMETRIC LE VY FLIGHTS

[Eq. 7(15/52-12-2191/ of ~Ref. [18] and TI(22) Imagine a random walker moving under the influence of a
= (2m)” V2271 (7)1 (z+1/2) [Eq. (6.1.18 of Ref.[18]],  weak constant forcé. Such a force introduces an asymme-
we obtain try into the walker's motion, since the probabilities of the

w1 forward and backward jumps, andw_ are now weighed
. V2 2 with the corresponding Boltzmann factorsw, /w_
Sm(_kwa)(?) : =expFakT). For F small one can takew,=1/2
(13 +Fa/27kT and w, =1/2+Fa/27kT. Fort large such ran-
dom walks lead to a Gaussian distribution of the particles’
which represents a series expansion for a symmetnig/Le positions,
stable law of index & [Eq. (9)], for the scaled variable

1 I'(2ka+1)
p()= 2 (~ D

ZIN2.  This  corresponds to a  form p(xt) 1 3 (X—vn)z)
=t~ Y22 (x/\2t?%;2a,0) of thex-distribution. Pru(X,1)= 2 exp{ 2n |/’ (19
We note that taking the Fourier transform of both parts of
the equation for symmetric RW's, whose center moves with a constant velocity= uF
=Fa?/27kT. Note that our RW’s fulfill Einstein’s relation
« 1 X2 between the mobilityn and diffusion coefficientD: u
L(ax,2a,0)=f ex;{ - —) L(n;e,—a)dn, =D/KT. The PDF of a random process which subordinates

0 \27n 2n

biased RW’s under an operational time following the asym-
metric Levy law is given by

(x— vn) n . dn
} P(x, t)—f \/_exp< )L tlm,a,—a '[17.
exp(—A|k|2“)=fo exp(—k?n)L(n;a,— a)dn, (15 (20)

wherea is an unimportant scaling factor, we obtain:

Using the series expansi¢ig. (9)] and performing a term-

which holds for any reak (i.e., for any positivek?), whereA  py-term integration, leads to a series of the integrals of the
is a number factor. This gives us a general expression for gpe

Laplace transform of an asymmetric \edistribution with
a<1: a Laplace transform of (n,a,— @) is expAu). w
From this fact an important result follows: u(& o) J

e—((—w§)2/2§§—ﬂd§
2mé

L(ax;a,B,O)zfxn*”ﬁL(x/nl’B;ﬂ,O)L(n;a,—a)dn. 2exp(§w)( I
0 -

2

w

(16) N

A Lévy distribution with indexa 8 is subordinated to a'luy ~ for w# 0. For an integral of th&th term in Eq.(9), we again
distribution with index 8<a under the operational time haveu=1+ ak. Let us concentrate first on the case @

1/4— pul2
) Ky w({w) (2
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<1. For {w small,v canceldsee expansiof9.6.9 of Ref. a) operational
[18], K, (2)=3iI'(»)(32)"" (»>0), note that K_ (2)

~K,(2)], 20 tha e corresponcing aistrbution tencs o be-a{[[1INIIIANTANININANINANT - o
function of £ only; it coincides with one fowm=0 [Eq. (12)],

so that a symmetric lwy-stable law of index 2 [Eq. (9)]

emerges. On the other hand, to¥ 0 andx large the overall physical
distributions follow from the expansion &f for large values i

of the argument, which reads,(z)=\(w/2z)e % [Eq. operational

(9.7.2 of Ref.[18]]. The corresponding integral then tends . | : | : .
to 1v(¢{/w) ™ *, so that the corresponding PDF reproduces o 20 40 60 80 wo !
the PDF of the density of eventap to rescaling This last o , ) ) )
form is also the asymptotic from corresponding to the behav- /G- 1. This figure illustrates the notion of operational tirfe.
. Operational time leading to a Scher-Montroll CTRW. The “ticks”
ior of Eq. (20) for larget. : ) .
P . triggering the motion of the random walkéhown as bars above
Hence the distributiof?(x,t) tends to a fully asymmetric . . . :
- . i the horizontal ling are taken from the set of ticks of a physical
one of indexa for x andt large. In this case the distribution

; . . w clock according to a waiting-time distributiogi(n)e<(n+1)"1"7
shows scaling with a scaling parameter x/(vt)“. We see (shown as bars below the lineThe process shows long lacunae;

that 'n_th's Case_ the_mOt'on under the i';‘ﬂuence. of a constantee the text for detailgb) We now declare each interval between

force is superdiffusive, so that=(Ft)™, and its depen- he (wo moves of the random walker for a new time unit. The initial
dence on the outer force is nonlinear. Thus the model showgks of the physical clock now follow extremely inhomogeneously
a behavior that differs considerably from the linear respons@nd show intervals of high condensation. This kind of operational
assumption of Refd.11,19,2Q. This absence of a linear re- time leads to Ley flights.

sponse regime is parallel to the CTRW findiid$ (see Ref.

[21] for a review and mirrors the fact that only for normal V. DUALISM BETWEEN SUBDIFFUSIVE

diffusion a sweep with constant velocity and a drift under a AND SUPERDIFFUSIVE CTRW'S

constant force result in the same pattern of motion, see Ref. ) ) )
[14]. There exists a clear dualism between a normal, subdiffu-

sive CTRW and a superdiffusive one. The corresponding
concepts are illustrated in discrete time by Fig. 1, where we
) ) return to a situation discussed in Sec. Il. Imagine a clock
P(x t):f“ 1 ex;{— (x—vn) ) t ex;{—t—)dn producing ticks following with frequency 1, marking the
' 0 \2mn 2n J2mn3 2n physical time of a system. Imagine a system which is trig-
gered not by each tick of a physical clock, but follows some
1 ot waiting-time distributiony(n). This means that after our
== meuxKl[wz(szz)] (22 random walker has jumped, the next jump will take place
after n ticks of a clock, where the numberis chosen ac-
cording to a power-law distribution, sayy(n)oc(n
[Eq. (2.3.16. of Ref. [25]]. Forv,x, andt small, the cor- 1 1)-1-¥ The numbem fluctuates strongly, so that the se-
responding distribution tends to a C{:\uchy law. On the Otheﬁuence of jumpgcorresponding to a randomly decimated
hand, fort large we can take approximately sequence of ticksshows lacunae of different duration. Fig-
ure 1(a) shows a realization of such a sequence for the case
1 Jot s v=0.75. The lacuna starting in the middle of Figa)lat t
P(X,t)~ —== ——— e/ V), (23) =54 ends at=161. The mean number of jumps during the
V2m (417 time t grows sublinearly with, namely, ag®“. Let us denote
the corresponding subordination transformation as a time-
The second moment of this distribution diverges, but theexpanding transformatiofiTET) of index y. According to
position of the maximum oP(x,t), determining the typical the procedure described above, the corresponding sequence
particle position at time, tends to grow ax,,=5t> for t  does not have any intervals where the density of events is
large. Thus the typical behavior of(t) under a constant larger than 1. The process, subordinated to random walks

The casex=1/2 again results in a closed expression:

force is superlinear. under such an operational tinf@ normal CTRW, is subdif-
Note that in the case<d a<2 the distribution of the par- fusive.
ticle’s displacement for the case=0 will tend to a Gauss- Let us now consider a sequence of jumps of a walker as

ian, but in the case >0 it still tends to a fully asymmetric ticks marking relevant time epochs of a systéma., associ-
Lévy one. On the other hand, in this case the distribution ofate each jump with a tick of a physical clgckFrom this
the particle’s position possesses the first moment whiclkpoint of view, the ticks of initial clocks follow extremely
grows linearly with time, thus the situation under>1 inhomogeneously, so that the number of such ticks within a
shows a linear response behavior. Since the second momapttysical time unit varies according fo(n)=(n+1)" 177,

of the distribution is absent, the fluctuations are strong, anérigure Xb) illustrates this situation: Here we took 100 jumps
the width of such distribution is of the order of the typical from the realization shown in Fig.(4), and rescaled each of
value ofx itself. the corresponding time intervals to the unit length. The ticks
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with a= v/ B. From Eq.(25) it follows that S(n,t) are the
inverse Laplace transforms of the stretched exponential
I T T T T 1
0 20 40 60 80

exp(—Au®). Note that according to the Bernstein’s theorem,
a functionf(x) is a Laplace transform of a probability dis-
tribution if and only if it is completely monotonifi.e., it is
infinitely differentiable and € 1)"f("(x)=0 for all deriva-
tives f(W], and f(0)=1. The last condition is always ful-

FIG. 2. The operational time stemming from subordination of filled. Note that according to criterion 2 discussed on p. 441
the two processes depicted in Fig. 1. Note that the bar-code-like s&f Vol. Il of Ref. [16], a functionf(x)=e~ "™ is a com-

shows both intervals of high condensation and long lacunae. pletely monotonic function if and only if) is a positive
function with a completely monotonic derivative. In our case

of initial clock (shown as bajgollow inhomogeneously, and #(X)=Au®. For 0<a<1, one hag(x)=¢'(x) =Aau® '
show intervals of high concentratigibut no lacunag The =0, and the higher denvatwe(siefnged on the interval 0
number of such events grows superlinearly in time. The cor=<X<%) are %’(x):Aa(a—l)u“* <0, g"(X)=Aa(a
responding subordination transformation will be called a™ 1)(a—2)u*>>0, 9"(x)=Aa(a—1)(a=2)(a
“time-squeezing transformation'(TST) of index y. The —3)u® °<0, etc,, so that¢1)"g!”(x)=0; thus the func-
process, subordinated to random walks under such an operén g is completely monotone. Thus(n,t) is a probability
tional time, is superdiffusive, and corresponds tovye d|str|but_|on(namely the one we have found aboveT by explicit
flights. Note that both the TST and TET are probability dis-Calculation. On the other hand, for>1 the functiong(x)
tributionsP(n,t) of the operational time for a given physi- IS not completely monotonic, so th&(n,t) is not a prob-
cal timet, i.e., they are positive, integrable functionsrof ~ ability distribution. Thus there is no random process which
Let us now combine the two processes. For example, lefiéfines the operational time in such a way that theyLe
us first generate a superlinear sequence using the algorithfight of indexa, will be transformed into a Ly flight with
described abovéwith p(n)oc(n+ 1)7173’], and then deci- indEXa2> aiq. The absence of an inverse of a TST bE|0nging
mate it randomly according to the waiting-time distribution t0 & class of subordination transformations has a deep physi-
#(n)=(n+1)"177. In this case the typical number of events cal interpretation: a TST is a coarse-graining procedsee
during a time intervat grows linearly witht, but the corre- ~ Fig. 1): information about the internal steps of the process is
sponding sequence of events is extremely inhomogeneoulgst. One cgr}not anticipate that a transformation inverse to a
showing both lacunae and accumulation intervals on alfoarse-graining procedure belongs to the same class as a di-
scales. This process is shown in a bar-code-like picture if€ct transformation.
Fig. 2. This will be discussed in more detail in Secs. VI and Note also that the fact that the TET and TST are not
VII. We can also proceed in other way, and apply the transinverses of one _another other is m|rro.red by the fact that
formations oppositely, namely, first generating a sublinearly/‘”th'n_ the formalism be}sed on the fractional Fokker-F_’!anck
growing, lacunary operational time and then filling the lacu-equationdFFPE'’s, the first one corresponds to an additional
nae according to a vy distribution. As we proceed to show, fractionaltime derivativeon the left-hand side of the FFPEs,
these two ways of constructing the event-time sets are no¥hile the second one is represented by a fracticpeitial
equivalent. The process, subordinated to a RW under such &l¢rivative see Refs[11,13,14,19 Note also that the non-
inhomogeneous operational time, is a kind of a continuouscommutativity mentioned above shows that the order of ap-
time Levy flight, and not a normal RW. plicgtion of these derivatives is fixed and cannot be arbi-
The example discussed above shows that transformatiofrily changed.
leading to a sublinear or superlinear operational time behav-
ior (dual to each other in the sense described abaxe not VI. “PARADOXICAL” DIEEUSION
the inverse of one another. Let us discuss the possibility of a ] i
subordination transformation transforming avizestable dis- A process subordinated to a\yeCTRW under the TET
tribution of index 8 (for example, a Gaussian distribution (& time transform leading to subdiffusive CTRWas con-

into one with a distribution of index, in the sense that sidered in detalil in Ref.11]. We now know that this process
subordinates normal random walks under a combination of

. TST's and TET's of different indice@ and y. The overall

L(ax: %O):f n~YBL(x/nYB: B,0)S(n,t)dn,  (24) bgha\(ior of the process is superdiffusive fyzn:,B and sub-
0 diffusive for y> B. This is easy to understand since the scal-
ing considerations show that the operational time grows su-

whereS(n,t) is supposed to be a probability distribution of perlinearly with physical time in the first case and that the
the number of steps done up to timet. Taking Fourier behavior is sublinear in the second case. Note that the index

transform of both parts of Eq24), and changing to a vari- # Of the corresponding lwy flight is exactly 23, so that this
ableu= k|4, we obtain behavior is exactly the one optalned in R[éﬂ} In the.case
when 8=y the operational time grows linearly with the
physical one: Ref.11] suggests that it falls into the diffusion
exp(—Alul*) = fme‘““S(n,t)dn, (25) universality class. On the other hand this diffusion is a very
0 special one: We will call a process subordinated to RW’s

100 4
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under such an operational time paradoxical diffusion. The 1.0 . . . . . . . .
random process defining an operational time stemming fron
a combination of TST's and TET’s of the same indghas
interesting properties typically grows in proportion ta; on
the other hand, neither a well-defined density, nor a well-
defined mean waiting-time, exists. 0.6 -
Let us first discuss the situation mentioned in the begin- _
ning of the section: a RW subordinated to agelistributed %S
operational time, driven by a sublinear operational time. The® 0.4
PDF of the corresponding random walks has power-law tails,
exactly those of a Lwy-distribution of indexy. On the other
hand, the overall width of the corresponding curve grows as
A=/t. Moreover, the whole distribution scales a as a func-

tion of dimensionless displacemeéitx/A: the overall be- 0.0

havior is somewhat similar to one found on a polymer chain sS4 3 2 0234 S
with bridges. The overall form of the function can be found o

using the well-known expression fgr(n,u), the Laplace N _
transform of the probability(n,t), to make exactlyn steps FIG. 3. The PDF of the random walker’s positions for paradoxi-

up to timet. Such a process corresponds to directed motioﬁal diffusion. The PDF’s are plotted as functions of the dimension-

under the same operational time as a CTRW. For the Ordil_efstshvariableg=xé(_g, vgl_wetr_ethi_s thiﬁofﬁio&' fof”tll_we upper quarglet
nary reneWaI process one hasp(n,u) — (1/u)[1 (0] € corresponding distrioution. € thick Tull line corresponds 1o

. RW under the subordination of a TST and a TEHq. (28)]; the
_ n ~1—u”
.lp(u)]lp (u), with (u)=1-u?[22]. Forusmall t large dashed line corresponds to the inverse situdtiem (34)]. The thin
this form corresponds to

full line represents a Gaussian distribution of the same width.
p(n,u)=u”"texp —nu?). (26) o o
one of Cauchy-distribution. For—0 the distribution
Considering paradoxical diffusion as a process subordinateB1,(k,t) shows a weaKlogarithmig singularity[following
to Levy flights of index 2y under operational time given by from Eq.(5.1.1]) of Ref.[18]], a sign of strong lacunarity of
p(n,t), we obtain forP(k,u), the Fourier-Laplace transform the corresponding operational time. The asymptotic analysis

of P(x,t): of Eq. (27) shows that such integrable singularities appear in
the center of distribution for € y=<1/2: the behavior fog
® o urt —0 is given byP (&) x£27"1, for y=1/2 P_(¢) diverges
Py(k,u)= JO e”"p(n,u)dn= K27 +u” (27 logarithmically, as we already saw in E@8).

The distributionP,,(£) is plotted in Fig. 3 together with

The scaling nature of the distribution is immediately evident;the Gaussian distributiofi.e., the distributionP,(¢) of the
the nature of its power-law tails follows from the asymptotic S8me class, the one corresponding to a normal diffjsiod
analysis fork small: The tail ofP.(£) stems from those of With the distribution stemming from the inverse order of ap-
L(x,2y,0), and has a power-law asymptoticB.(¢) p!|cat|on of_TET’s _and TST'stoa 5|n_1pl_e dn_‘fu5|on, which is
x¢~1727 (< 1). Note that such a distribution was obtained @scu_ssed in detail in Sec._VII. AII. dlstrlputlpns are normal-
in Ref.[11] as a solution of a fractional diffusion equation, ized in such a way that t.helr quartiles coincide. Note that the
describing a random process incorporatingy gumps tak- ~ duartiles ofP (&) are situated at-0.841.

ing place under a sublinear operational time. As an example

let us consider the distributioR,(x,t), i.e., for y=1/2. VIl. NONCOMMUTATIVITY OF TIME SUBORDINATION

This distribution has a simple analytical form, which can be ) ) .
obtained by an inverse Laplace-Fourier transformation of Eq. “\PPIYing the transformations the other way around, i.e.,

(27). The inverse Laplace transform of EQ7) is given in considering a process subordinated to a Scher-Montroll
Eq. (32) of Ref. [23], and reads Pykt) CTRW under Ley time, we obtain a process which is dif-

—exp(@terfc(k|t¥?). The inverse(cosing Fourier trans- ferent from the one discussed above. Let us start with a

form of this function is given by Eq10.6 of Ref.[24], and simple example.
g y Eq106 [24] Let us note that the TET of index 1(2orresponding to an

reads . T :
inverse Laplace-transform of the functiom ™'/ \u) is
1 given by
Pya(X,t)=— 2—\/E7-r_3/2exr(x2/4t)Ei( —x2/14t), (28)
1 2
nt)= —e "4, 29
where Eik) is the exponential integral; see E.1.2 of Quan.t) Jt &

Ref.[18]. The corresponding function is a scaling function of

&= x/tY2 its behavior for¢ large follows from asymptotic i.e., corresponds to part of a Gaussian distributionnfor0,
expansion of —Ei(—x)=E;(x)=x"'eX[1—1/ix+---], so so thatn typically grows ast*2. The corresponding TST is
that asymptoticallyP,(¢) shows ar¢~2-like tail, similarto  given by a distribution [Eq. (18)], Ryx(T,n)

011104-7
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=(n/2{7T¥)e "T_ The subordination of these two pro- Changing to a new variablg=x?/2T, and then introducing a
cesses is described by a function scaling variable¢=x/\/t, we obtain the PDFP(x,t) as a
scaling function of¢:

© 1 ) n 5
SyAT,t)= f e M e "Tdn 1 o fU2gt
0 \mt 27T x5 =—|g | ——dz. (33)
2 tT -
“ VT ?+ 1 (30 For ¢ large the corresponding integral decays asrj2/ 3.

Note that Eq(33) can be expressed in terms of Fresnel sine

which is a probability distribution with the tail decaying as and cosine integral§(x) and C(x), so thatP(¢) can be
T3 (as a tail of a stable distribution of index 1/and with ~ ©Ptained in a closed form:
the square-root singularity at zero. Note that this distribution

is just a solution of a fractional Liouville equation describing * B ES €]

directed motion under such an operational time, just as Eq. PIA€)= N sin| || 1-2S N

(28) is the solution of a fractional diffusion equation. This is

a process subordinated to avyeone under sublinear time & €]

growth. +COE< E) 1-2C N ; (34)
We now show tha@ andR distributions leading to para- m

doxical diffusion are not commutative: An operatational time . L
resulting from arRQ transformation has a different distribu- S€€ EQ{2.3.7.10 of Ref.[25]. The corresponding distribu-
tion from one stemming from &R one. For example, the t|9n is ajso plotted in Fig. 3.as a dgshed line. Note that the
distribution S;(T,t) given by Eq.(30) is Sy«T,t)=Q*R d|str|put|op shqws_ a cusp singularity &&0. Thfa value Qf

— [Q(n,HR(T,n)dn. Let us calculate a conjugated distribu- P(£) in this point is 14/m=0.564 ... .. Thequartiles of this
tion St(T,t)=R*Q=[R(n,t)Q(T,n)dn, describing a pro- distribution are situated at 0.621.

cess subordinated to a sublinear growth under the operational

time growing according to a lwy distribution. The distribu-  VIIl. RELAXATION PHENOMENA UNDER TEMPORAL

tion Sy (T,t) is given by SUBORDINATION

. 1 ¢ ot 1 The fact that the ey dynamics can follow from a tem-
f e T2/4n e~ thngn= =" poral subordination is important if one wants to analyze the
o \mn 2\/mn3? T t24+T2'  possible thermodynamical implications of the wyeflight
(31) transport. Imagine an ensemble of thermodynamical systems
_ N ~__ (say Brownian particles in a harmonic potentiatich was
i.e., corresponds to the positive part of a Cauchy d|str|but|onput out of equilibrium and then allowed to relax. As dis-
Note that even such a robust scaling property of a probabilitt.ssed in Sec. II, such relaxation will lead to a stationary
distribution as a nature of its power-law tail is different from gtate corresponding to a normal equilibrium Boltzmann dis-
one for its conjugated counterpart. _ tribution. Since this distribution is time independent, it
The plausible scaling consideration here is as followsyyoyld not change under temporal subordination, so that sys-
The distributionQ(T,n) has all moments, so that forlarge  tems with Lery dynamics may have very ordinary thermo-
the value ofT is well defined, and is of the order of*, @  gynamical equilibrium states, and thus be described by nor-
<1. On the other hand, the distribution mfas a function of mal Gibbs-Boltzmann entropy_ The non-Boltzmann nature of
t is broad and shows a power-law taiP(n,t) the equilibrium found in Ref[19] was connected with the
ot~ Ho(n/t¥*) "1 7 %ctn 1% Now changing the variable fact that the linear response was considered, as proposed in
from n to Tecn®, we obtain the asymptotics of the PDFDf  Ref.[20], an assumption at variance with the findings of Sec.
in a form P(T,t)=tT~?, independently ofr. We thus note  |v. Let us now discuss the relaxation to this equilibrium.
that the probability distribution subordin:;lting a sublinear A system slightly outside of equilibrium can be consid-
continuous-time directed motion under theviedistributed  ered as evolving under the influence of the linear restoring
operational time of the same index has a power-law tail deforce. In the operational time of the systémarked by the
caying asT 2, i.e., is similar to a Cauchy distribution. numbern of jumps this relaxation will be described by a
The process subordinated to a Gaussian RW, under grokker-Planck equation. For an overdamped particle in a
operational time defined b$;(T,t), is also not a normal harmonic potential we obtain, for example,
diffusion, but represents a marginal situation of a distribution
whose second moment diverges logarithmically. The corre- P 9 J
sponding PDF shows power-law tails ofxa® type. This - 5( VkXPJFD&P)- (39
PDF is given by

S’]‘:/Z(T!t) =

- ot Note that the values of andD fulfill Einstein’s relationy
P* (X t):f P S dT (32  =D/KT. The Green’s function of Eq(35) has a form of a

1/2! ! 2 2 N . . . .
0 \27T T+ T Gaussian distribution, and reads

011104-8



LEVY FLIGHTS FROM A CONTINUOUS-TIME PROCESS PHYSICAL REVIEW B3 011104

Let us consider the relaxation in a harmonic potential un-
G(x,n|Xg,Ng) = 14 der "paradoxical” diffusion. Here again we can use the mo-
27D(1—e 2(""M0)) ment expansiofEq. (39)], and set down an expression for
o the characteristic function of the overall distribution:
" p( yk(x—e™ 7" Molxg)?
exp — ;
2D(1—e 27"~ "0)) P(k,t):f ex] —ikx'e " Dk3(1—e 2"M)/2y]
(36)
XS, (n,t)dn. (42

see Sec. 5.4 of Ref26]. This equation gives us, e.g., the S

PDF at a timen in a system, in which the particles were all Note that the moments of the corresponding distribution are
situated akk=x, atn=n,. It is easy to see that the first two combinations of the functions:

central moment$! ;= (x) andM,={(x—(x))?) relax expo-

nentially to their equilibrium values, so that B(t)= fmexp(—)\T)Sa(T,t)dT. .
0
(x(n))=xpexp — 7 n) (37)
Note thatS,(n,t) is a PDF of a process subordinated to a
and Leévy distribution under a TET:
oz(n)=k2[1—exr(—27_ln)], (38) Sa(T,U:f drr VoL (T/ 74, @, — @) Q (7, )d 1.
Y

(44)

being a typical pattern of relaxation of a system with only s a Laplace transform & according to its outer time
one relaxation time-= (ky) ~*. Since all higher moments of variable, is a stretched-exponential, so that
a Gaussian distribution are the combinations of the lower ' '

two, they also relax to their equilibrium values in(multi- %
)yexponential fashion. Let us start from the Fourier-transform d(t)= fo p(7,t)exp(—AN“T)dT. (45
of Eq. (36), and note that under subordination
Let us take a Laplace transform of this expression. Using Eq.
P(k,t)= f exf —ikx’e” "~ DKZ(1—e 2")/2y] (26), we obtain
a—1
—la la *®
Xt~ Vel (n/tY*,a,— a)dn. (39) q,(u):f U Texp — 7u%)exp(— ANCT)dr— — .
0 u“+AN®
Let us moreover expand the exponential term in a Taylor (46)
series ink: the coefficients of this series give the moments of ] ]
the corresponding distribution. From E@&9) it follows then For smallu (long timeg this corresponds to a power-law

that theith moment is a combination of integrals of the type decay of®(t) of a form @(t)=t™« for t>\"*. Thus the
relaxation in the case of paradoxical diffusion resembles

o those in normal CTRW, and is dominated by large lacunae.
q)(t)_f exp(—An)t~ Y L(n/t" a,—a)dn, (40) |n the case when the processes are subordinated the other
way around, i.e., according t8}(T,t), the decay at longer
times follows the universat™!-law: for example, fora
=1/2, we obtain

0

with A=mvy, O=m=i. Using the fact that a Laplace trans-
form of a fully asymmetric Ley distribution is a stretched
exponential function, we obtain: ot (e 1
O (t)=exg — AMtY*) ] =exp — AN%T). (41) o= Tl'fo expl )\T)t2+T2dT
This means that the exponential relaxation undevyley-
namics remains a simple exponential relaxationly the
corresponding relaxation time changeEor example, the
first moment of the distributioiithe particle’s positiohstill see EQ.(2.3.7.1) of Ref. [25] [here the integral sine and
relaxes exponentially to its equilibrium value of zero. On thecosine  functions, sk)=—[;(sinx/X)dx and ci)
other hand, the dependence of the relaxation time on the — [7(cosx/x)dx, are usell For \t>1, we obtain
outer parametersay, temperatujesntering through the val-
ues ofy andD can change considerably. Thus the superdif-
fusive Levy-flight dynamics in the force-free case can coex-
ist with standard thermodynamics and with very simple
relaxation patterns, as far as the case of a harmonic force tee asymptotic behavior which is universal for all e
concerned. driven CTRW's of the same index.

-~ %[sin()\t)ci()\t) —cog\D)siAD)],  (47)

2
()= _(\0)" (48)

011104-9



I. M. SOKOLOV PHYSICAL REVIEW E63 011104

IX. CONCLUSIONS bution. The combination of superlinear- and sublinear opera-

tional times(i.e., Levy flights under a sublinear operational

A broad range of physical processes can be described Fne or a Scher-Montroll CTRW under g time) corre-

rocesses subordinated to a random walk under some opera- . o e .
b P 3ponds to “paradoxical” diffusion, a random process which

tional time. In particular, such a subordination leads 0,7, ¢ ce free case leads to probability distributions of the

,ﬁlneogfrl]zl:_swfgirt]iﬁ?;pn?npuec:ﬂz:st'irﬁgvggggomwvcael)k(zrgplembceéggarticle’s displacements, which show the power-law tails and
- ap ack a second moment. The width of the distribution, on the

in which the operational timégiven by the number of steps .
) : : . > ; other hand, grows proportionally to the square root of the
IS sublinear in the physical time Here we have considered time, showing a typically diffusive behavior. Some physical

the processes subordinated to a diffusive process under an ' 7. 0 )
operational time governed by awedistribution with index "i’mphcatlons of these findings have been discussed.

0<a<1; thatis, the operational time is superlinear in physi-
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