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Lévy flights from a continuous-time process

I. M. Sokolov
Theoretische Polymerphysik, Universita¨t Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg im Breisgau, Germany

~Received 30 July 2000; published 20 December 2000!

Lévy flight dynamics can stem from simple random walks in a system whose operational time~number of
stepsn) typically grows superlinearly with physical timet. Thus this process is a kind of continuous-time
random walk~CTRW!, dual to the typical Scher-Montroll model, in whichn grows sublinearly witht. Models
in which Lévy flights emerge due to a temporal subordination allow one easily to discuss the response of a
random walker to a weak outer force, which is shown to be nonlinear. On the other hand, the relaxation of an
ensemble of such walkers in a harmonic potential follows a simple exponential pattern, and leads to a normal
Boltzmann distribution. Mixed models, describing normal CTRW’s in superlinear operational time and Le´vy
flights under the operational time of subdiffusive CTRW’s lead to a paradoxical diffusive behavior, similar to
the one found in transport on polymer chains. The relaxation to the Boltzmann distribution in such models is
slow, and asymptotically follows a power law.
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I. INTRODUCTION

Random walk processes leading to subdiffusive or sup
diffusive behavior are adequate for describing various ph
cal situations. Thus the continuous-time random w
~CTRW! model of Scher and Montroll@1# was a milestone in
the understanding of photoconductivity in strongly diso
dered and glassy semiconductors, while Le´vy-flight models
@2# are adequate for a description of transport in hetero
neous catalysis@3#, self-diffusion in micelle systems@4#, re-
actions and transport in polymer systems under confor
tional motion@5#, transport processes in heterogeneous ro
@6#, and the behavior of dynamical systems@7#. Closely re-
lated models appeared in a description of economic t
series@8#. Lévy-related statistics were observed in hydrod
namic transport@9#, and in the motion of gold nanocluste
on graphite@10#. Mixed models were proposed , in which th
slow temporal evolution~described by a Scher-Montro
CTRW! is combined with the possibility of Le´vy jumps, so
that in general both subdiffusion or superdiffusive behav
can arise@11#.

The continuous-time random walks first introduced
Montroll and Weiss@12# correspond to a stochastic model
which steps of a simple random walk take place at timest i ,
following some random process with non-negative inc
ments: t i5t i2t i 21>0. In a mathematical language, on
states that a CTRW is a process subordinated to a ran
walk under the operational time defined by the process$t i%.
It is typically thought that a CTRW scheme alone cann
describe any superdiffusive process, so that the introduc
of very long jumps is an inevitable part of building a mod
leading to a superdiffusive behavior.

Let us first discuss a typical CTRW approach. We co
sider a one-dimensional situation under which a part
from time to time makes a jump to a neighboring lattice s
separated from the initial one by a distancea. The timet
between the two jumps is distributed according to so
waiting-time distribution, represented by the probability de
sity function~PDF! p(t). If the mean waiting timet̄ exists,
1063-651X/2000/63~1!/011104~10!/$15.00 63 0111
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the particle’s behavior is diffusive, with a diffusion coeffi

cient D5a2/2t̄. If the corresponding moment diverges, th
particle’s behavior becomes subdiffusive, with^r 2(t)&}ta,
wherea,1 depends on the PDFp(t). Subdiffusive behav-
ior is indicated by a vanishing of the diffusion coefficientD.
Within this scheme of seems impossible to obtain any ty
of superdiffusive behavior unless one allows for infinite
long jumps with^a2&→`. Superdiffusive behavior is indi-
cated by divergence of the diffusion coefficientD. If ^a2&
remains finite, this can be the case only ift̄ a vanishes. Since

t.0 and t̄5*0
`tp(t)dt, a vanishing of the mean waiting

time means thatp(t)5d(t)—marginal, degenerate situa
tion.

On the other hand the consideration presented ab
shows only that the waiting-time distribution is not an a
equate tool for a description of superdiffusive CTRW’s.
what follows we show that superdiffusive CTRW’s wit
bounded step lengths are just as likely to occur as subd
sive ones. Our considerations will be rather formal, and
not follow from any particular physical model. On the oth
hand, the fact that Le´vy flights can stem from a proces
subordinated to simple random walks has many import
implications. Thus, as we proceed to show, the fast dynam
of a free process can coexist in such models with sim
exponential relaxation to a normal Boltzmann equilibriu
distribution, if the behavior of an ensemble of random wa
ers under a restoring force is considered. This shows tha
relation between Le´vy dynamics and the nonextensive the
modynamics described by nonclassical entropy function
much looser than typically assumed.

The combination of superdiffusive Le´vy flights with a
typical CTRW operational time leads to a paradoxical diff
sion behavior, having some parallels to transport in polym
chains. Moreover, the existence of a subordination mo
leading to Lévy flights can be useful in understanding th
statistical implications of the processes described by fr
tional generalizations of diffusion and Fokker-Planck equ
tions @13–15#.
©2000 The American Physical Society04-1
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This paper is organized as follows: In Sec. II we discu
general properties of subordinated random processes
Secs. III and IV processes subordinated to symmetric
asymmetric random walks are considered, these leadin
symmetric and asymmetric Le´vy flights. The dualism be-
tween the Le´vy flights and the Scher-Montroll CTRW is dis
cussed in Sec. V. Sections VI and VII discuss the mod
leading to paradoxical diffusion behavior. The relaxation
equilibrium is considered in Sec. VIII.

II. SUBORDINATION OF RANDOM PROCESSES

As already mentioned, a Scher-Montroll CTRW proce
is a simple random walk whose steps take place at timet i
governed by a random process with non-negative indep
dent increments, so that

P~x,t !5(
n

PRW~x,n!pn~ t !, ~1!

where PRW(x,n) is a probability distribution to find a ran
dom walker at pointx after n steps~i.e., the binomial distri-
bution!, and pn(t) is the probability of making exactlyn
steps up to timet. For botht andn large, when the binomia
distribution can be approximated by a Gaussian one,
when the corresponding sum can be changed to an inte
Eq. ~1! reads

P~x,t !.E
0

` 1

A2pn
expS 2

x2

2nD pt~n,t !dn. ~2!

In a classical Scher-Montroll CTRW,pt(n,t) corresponds to
a random process in whichn typically grows sublinearly int.
Thus the overall process is subdiffusive.

Note that the description of the CTRW process given
Eq. ~2! is an example ofsubordination; see Sec. X 7 of Ref
@16#: If $X(T)% is a Markov process with continuous trans
tion probabilities and$T(t)% a process with non-negative in
dependent increments, then$X(T(t))% is said to subordinate
to $X(t)% using the operational timeT. In this case,

P~x,t !5E
0

`

Px~x,T!pT~T,t !dT. ~3!

In what follows we call the integral transform@Eq. ~3!# a
subordination transformation, changing from time scalet to a
time scaleT. For example, in the Scher-Montroll case t
operational time of a system is given by the number of st
of the RW, and is a random function of the physical timt
whose typical value grows sublinearly int.

The operational time can also grow superlinearly witht.
Such a process can not be described by a waiting-time
tribution, and needs a complimentary description. Let
consider a random process, where thedensityof events fluc-
tuates strongly. Let us subdivide the time axis into interv
of durationDt, and let us consider the numbern of jumping
events within each interval. The valuer5n/Dt defines the
density of jump events. Now, if the mean density of eve
exists, its inverse gives us exactly the mean waiting time
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jump, and a process described by a finite density of even
a normal diffusive one. The divergence of a mean wait
time ~as in a Scher-Montroll CTRW! corresponds to a van
ishing density. On the other hand, if one considers a stron
fluctuating densityr(t) whose first moment diverges, th
mean waiting time vanishes, and a process that subordin
a random walk process under such an operational time ca
superdiffusive. At longer times, the distribution of the num
ber of events tends to one of the Le´vy-stable laws: the typica
number of events can grow superlinearly in time. A simp
example of such a process was already known to Feller;
Chap. X 7 of Ref.@16#. He considered a process subordinat
to simple random walks under the operational time gover
by a fully asymmetric Le´vy stable law of index 1/2. The
corresponding PDF at timet is given by

P~x,t !5E
0

` 1

A2pn
expS 2

x2

2nD t

Apn3/2
expS 2

t2

2nDdn

5
t

p~ t21x2!
, ~4!

i.e., it is a Cauchy Le´vy-flight.
Let us now discuss a simple analogy describing the re

tion between the Scher-Montroll CTRW and Le´vy flights.
This analogy makes clear many of the findings we are go
to discuss below. Imagine a physical clock producing tic
following with frequency 1, which govern the behavior of
random walker. Imagine a switch situated at 0, so that,
turning to the origin, the walker can trigger some physic
process@the analogy with the Glarum model of relaxatio
~see Ref.@17#!, is evident#. The times between the subs
quent returns are distributed according to a fully asymme
Lévy stable law of index 1/2 used in a previous examp
Now imagine another random walker performing its moti
~a step per physical unit time! independently from the firs
one. Imagine a movie camera, taking frame-per-frame p
tures of the positions of this second random walker at
moments when the first walker is at the origin and thus tr
gers the switch. Watching the movie taken by the camera,
immediately recognize that the second walker performs
Cauchy Lévy flights. Imagine that a clock is posed in a fram
and also filmed. In this case its image will show exactly t
operational time of the system; the spectator’s watch m
sures the physical time. Imagine an opposite situation:
first walker triggers the motion of the second one, and
camera is triggered by the physical clock, as a normal mo
camera is. The process we recognize at the film is then
Scher-Montroll CTRW. We can also take a Scher-Montr
movie using another trick~which cannot be performed in
real time, but needs a record of return times!. Let us take a
record of subsequent return times of a first random wal
~numbersn1 , n2 , . . . ), andtrigger our camera in such a wa
that it makesn1 frames during the first second,n2 frames
during the second one, etc. If we film a normal rando
walker with a camera prepared in such a way, the movie w
show us a Montroll-Weiss CTRW. An image of the physic
clock will again show the operational time of the system, a
4-2
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LÉVY FLIGHTS FROM A CONTINUOUS-TIME PROCESS PHYSICAL REVIEW E63 011104
again, looking at his watch, the spectator can measure
physical time between two events.

Let us use our camera, triggered by returns of a rand
walker to film other processes taking place in the ou
world. The film, which is watched afterwards at a const
speed, shows us apossibleworld: The causality relations an
thermodynamical time arrow are those of our usual wo
On the other hand, a movie of a world undergoing a conti
ous evolution, in which ‘‘natura non facit saltus’’holds, will
show us a revolutionary world of ‘‘great leaps’’ and abru
changes~but following the same logics of development!. The
second camera~fed by a prescribedn sequence! will show us
a world of almost full stagnation seldomly interrupted by
bounded, local movement, a world developing in a slow ti
of old Asiatic despoty. We shall keep this analogy in mi
when discussing the physical implications of subordinatio

Let us consider a system which evolves according t
Markovian dynamics, and whose state tends to a nor
Boltzmann equilibrium under relaxation. In a system und
action of outer forces, the transition probabilities between
states of the system~sitesi between which the random wal
takes place!, which are characterized by their energiesEi ,
are not independent. They are connected through the co
sponding Boltzmann factors, so that in equilibrium duri
any period of timeDt the mean numbers of forward an
backward jumps between any two sitesi and j fulfill the
condition

ni j ~Dt !/nji ~Dt !5exp@~Ei2Ej !/kT#, ~5!

where k is the Boltzmann constant andT is the system’s
temperature. Condition~5! guarantees a detailed balance
equilibrium, independent of what the real dynamics of a s
tem is. For simple RW’s, where only transitions between
neighboring states are allowed, corresponding transition r
with respect to the operational time of the system can
introduced. For a random walker moving under the influen
of a weak constant forceF the probabilities of forward and
backward jumps per unit timesw1 andw2 are connected by
w1 /w25exp(Fa/kT). The Markovian nature of RW’s then
leads to the fact that the values ofw1 andw2 do not depend
on whether the system is in equilibrium or not. ForF small,
one can take, say,w15w0(11Fa/kT) and w25w0(1
2Fa/kT) with w051/2t.

Note that subordination, describing a transition from
physical time to an operational time of the system, does
change its equilibrium properties. Such subordination can
considered as a random modulation of the transition ratew0
by some independent process~say closing and opening th
channels!, and is fully irrelevant for the thermodynamics~i.e.
thermostatics! of the system. On the other hand, it strong
influences its kinetics, so that a question can be posed a
what kinds of kinetics are compatible with relaxation to
normal Boltzmann distribution under an arbitrary subordin
tion transformation of time. We address this question in S
VIII, after the free diffusion properties of superdiffusiv
CTRW’s are discussed.
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III. SYMMETRIC LE ´ VY FLIGHTS FROM CTRW’S

Let us first concentrate on the symmetric random w
case. Let us consider a random process in which the num
of events per given time is unbounded and follows, for e
ample, a power-law distributionpn(t)}tn212a, with 0,a
<1 ~this corresponds to the typical number of events sca
asn}t1/a). Let us find the asymptotic behavior ofP(x,t) for
t large. Since the jumps during different intervals are unc
related, the PDF ofn for longer times converges to a full
asymmetric Le´vy stable law

p~n,t !.t21/aL~n/t1/a;a,g!, ~6!

with the asymmetry parameterg52a @here the values of
g56a correspond to the strongly asymmetric PDF th
vanish identically for large positive~negative! x values,
while g50 corresponds to symmetric distributions; the n
tation is from Ref.@16##. Note that the Fourier transforms o
Lévy-stable laws are known: up to the translation and sca
P(k,t) is equal to

f ~k!5exp@2ukuaeipg/2# ~7!

~for 0,a,2, aÞ1). The PDF is a real function, thu
f (k)5 f * (2k). The corresponding function is analytical e
erywhere except fork50, so that the PDF is given by

L~x;a,g!5
1

p
ReE

0

`

e2 ixz2zaeipg/2
dz. ~8!

From Eq.~8! the series expansions forL(y;a,g) follow, see
Sec. XVII 6 of Ref.@16#. In the casea,1 one can move the
path of integration to the negative imaginary axis~since the
integrand tends to zero when Imz→2` due to the domi-
nance of the linear term!, which then allows for elementary
integration after a Taylor expansion of exp(Aza). For 1,a
,2 this dominance is no longer the case, but the integr
still vanishes for Imz→2` in the case of symmetric distri
butions, while (2 i uzu)a5uzua@cos(p/2)a2 i sin(p/2)a#
→2` for 1,a,2. Thus the series which represents Le´vy
distributions for 0,a,1, and also a symmetric Le´vy distri-
bution for 1,a,2, g50, reads

L~y;a,g!5
1

py (
k51

`

~21!k
G~ka11!

k!

3sinS kp

2
~g2a! D y2ak ~9!

~in the last case the series does not converge absolutely!. In
general, the Le´vy-stable laws for 1,a,2 are given by an-
other expansion,

L~y;a,g!5
1

py (
k51

`

~21!k
G~11k/a!

k!
sinS kp

2
~g2a! D y2k,

~10!

which also holds for asymmetric laws.
4-3
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One can easily obtain the form of thex distributions by
immediate integration: using Eq.~2! and a scaling form of a
Lévy distribution,

p~x,t !.E
0

` 1

A2pn
expS 2

x2

2nDLS n

t1/a
;a,2a D dn

t1/a
.

~11!

Using Eq.~9! and performing a term-by-term integration, w
arrive at a series of integrals of the form

I m~z!5E
0

` 1

A2pj
e2(z2/2j)j2mdj

5
1

A2p
S z2

2 D 1/22m

G~m21/2!. ~12!

For an integral of thekth term in Eq.~9!, we havem51
1ak . Let us first concentrate on the case 0,a,1. Using
well-known relations for theG function, G(z11)5zG(z)
@Eq. ~6.1.15! of Ref. @18## and G(2z)
5(2p)21/222z21/2G(z)G(z11/2) @Eq. ~6.1.18! of Ref. @18##,
we obtain

p~z!5
1

p (
k51

`

~21!k
G~2ka11!

k!
sin~2kpa!SA2

z D 22a21

,

~13!

which represents a series expansion for a symmetric Le´vy-
stable law of index 2a @Eq. ~9!#, for the scaled variable
z/A2. This corresponds to a form p(x,t)
5t21/2aL(x/A2t2a;2a,0) of thex-distribution.

We note that taking the Fourier transform of both parts
the equation for symmetric RW’s,

L~ax,2a,0!5E
0

` 1

A2pn
expS 2

x2

2nDL~n;a,2a!dn,

~14!

wherea is an unimportant scaling factor, we obtain:

exp~2Auku2a!5E
0

`

exp~2k2n!L~n;a,2a!dn, ~15!

which holds for any realk ~i.e., for any positivek2), whereA
is a number factor. This gives us a general expression f
Laplace transform of an asymmetric Le´vy distribution with
a,1: a Laplace transform ofL(n,a,2a) is exp(2Auat).
From this fact an important result follows:

L~ax;ab,0!5E
0

`

n21/bL~x/n1/b;b,0!L~n;a,2a!dn.

~16!

A Lévy distribution with indexab is subordinated to a Le´vy
distribution with index b,a under the operational time
01110
f

a

given by an asymmetric Le´vy law of index a,1. To see
this, consider the characteristic functions of both sides of
~16!, and use Eq.~15!.

exp~2Aukuab!5E
0

`

e2ukubnL~n;a,2a!dn, ~17!

see Sec. X 7 of Ref.@16#. Equation~15! corresponds to a
special case ofb52 of Eq. ~17!. The distributionsL(n;a,
2a) thus coincides with inverse Laplace transforms
stretched exponentials. For example, forL(n;1/2,21/2) one
readily obtains:

p~n,t !5L 21$exp~2tu1/2!%5
t

2Apn3/2
expS 2

t2

4nD ,

~18!

which differs only by a scale for the time-unit from a distr
bution used in the example of Eq.~4!.

IV. ASYMMETRIC LE´ VY FLIGHTS

Imagine a random walker moving under the influence o
weak constant forceF. Such a force introduces an asymm
try into the walker’s motion, since the probabilities of th
forward and backward jumpsw1 andw2 are now weighed
with the corresponding Boltzmann factors,w1 /w2

5exp(Fa/kT). For F small one can takew151/2
1Fa/2tkT and w151/21Fa/2tkT. For t large such ran-
dom walks lead to a Gaussian distribution of the particl
positions,

PRW~x,t !5
1

A2pn
expS 2

~x2vn!2

2n D , ~19!

whose center moves with a constant velocityv5mF
5Fa2/2tkT. Note that our RW’s fulfill Einstein’s relation
between the mobilitym and diffusion coefficientD: m
5D/kT. The PDF of a random process which subordina
biased RW’s under an operational time following the asy
metric Lévy law is given by

P~x,t !.E
0

` 1

A2pn
expS 2

~x2vn!2

2n DLS n

t1/a
;a,2a D dn

t1/a
.

~20!

Using the series expansion@Eq. ~9!# and performing a term-
by-term integration, leads to a series of the integrals of
type

I m~z,v!5E
0

` 1

A2pj
e2(z2vj)2/2jj2mdj

5
2exp~zv!

A2p
S z2

v2D 1/42m/2

K1/22m~zv! ~21!

for vÞ0. For an integral of thekth term in Eq.~9!, we again
havem511ak. Let us concentrate first on the case 0,a
4-4
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LÉVY FLIGHTS FROM A CONTINUOUS-TIME PROCESS PHYSICAL REVIEW E63 011104
,1. For zv small, v cancels@see expansion~9.6.9! of Ref.

@18#, Kn(z). 1
2 G(n)( 1

2 z)2n (n.0), note that K2n(z)
5Kn(z)], so that the corresponding distribution tends to b
function ofz only; it coincides with one forv50 @Eq. ~12!#,
so that a symmetric Le´vy-stable law of index 2a @Eq. ~9!#
emerges. On the other hand, forvÞ0 andx large the overall
distributions follow from the expansion ofK for large values
of the argument, which readsKv(z).A(p/2z)e2z @Eq.
~9.7.2! of Ref. @18##. The corresponding integral then ten
to 1/n(z/v)2m, so that the corresponding PDF reproduc
the PDF of the density of events~up to rescaling!. This last
form is also the asymptotic from corresponding to the beh
ior of Eq. ~20! for large t.

Hence the distributionP(x,t) tends to a fully asymmetric
one of indexa for x andt large. In this case the distributio
shows scaling with a scaling parameterj5x/(vt)a. We see
that in this case the motion under the influence of a cons
force is superdiffusive, so thatx.(Ft)1/a, and its depen-
dence on the outer force is nonlinear. Thus the model sh
a behavior that differs considerably from the linear respo
assumption of Refs.@11,19,20#. This absence of a linear re
sponse regime is parallel to the CTRW findings@1# ~see Ref.
@21# for a review! and mirrors the fact that only for norma
diffusion a sweep with constant velocity and a drift unde
constant force result in the same pattern of motion, see
@14#.

The casea51/2 again results in a closed expression:

P~x,t !5E
0

` 1

A2pn
expS 2

~x2vn!2

2n D t

A2pn3
expS 2

t2

2nDdn

5
1

p

vt

Ax21t2
evxK1@Av2~x21t2!# ~22!

@Eq. ~2.3.16.1! of Ref. @25# #. For v,x, and t small, the cor-
responding distribution tends to a Cauchy law. On the ot
hand, fort large we can take approximately

P~x,t !'
1

A2p

Avt

~x21t2!3/4
ev(x2Ax21t2). ~23!

The second moment of this distribution diverges, but
position of the maximum ofP(x,t), determining the typical
particle position at timet, tends to grow asxmax5

2
3t

2 for t
large. Thus the typical behavior ofx(t) under a constan
force is superlinear.

Note that in the case 1,a,2 the distribution of the par-
ticle’s displacement for the casev50 will tend to a Gauss-
ian, but in the casev.0 it still tends to a fully asymmetric
Lévy one. On the other hand, in this case the distribution
the particle’s position possesses the first moment wh
grows linearly with time, thus the situation undera.1
shows a linear response behavior. Since the second mo
of the distribution is absent, the fluctuations are strong,
the width of such distribution is of the order of the typic
value ofx itself.
01110
a

s

-

nt

s
e

f.

r

e

f
h

ent
d

V. DUALISM BETWEEN SUBDIFFUSIVE
AND SUPERDIFFUSIVE CTRW’S

There exists a clear dualism between a normal, subdi
sive CTRW and a superdiffusive one. The correspond
concepts are illustrated in discrete time by Fig. 1, where
return to a situation discussed in Sec. II. Imagine a clo
producing ticks following with frequency 1, marking th
physical time of a system. Imagine a system which is tr
gered not by each tick of a physical clock, but follows som
waiting-time distributionc(n). This means that after ou
random walker has jumped, the next jump will take pla
after n ticks of a clock, where the numbern is chosen ac-
cording to a power-law distribution, sayc(n)}(n
11)212g. The numbern fluctuates strongly, so that the se
quence of jumps~corresponding to a randomly decimate
sequence of ticks! shows lacunae of different duration. Fig
ure 1~a! shows a realization of such a sequence for the c
g50.75. The lacuna starting in the middle of Fig. 1~a! at t
554 ends att5161. The mean number of jumps during th
time t grows sublinearly witht, namely, ast3/4. Let us denote
the corresponding subordination transformation as a tim
expanding transformation~TET! of index g. According to
the procedure described above, the corresponding sequ
does not have any intervals where the density of event
larger than 1. The process, subordinated to random w
under such an operational time~a normal CTRW!, is subdif-
fusive.

Let us now consider a sequence of jumps of a walker
ticks marking relevant time epochs of a system~i.e., associ-
ate each jump with a tick of a physical clock!. From this
point of view, the ticks of initial clocks follow extremely
inhomogeneously, so that the number of such ticks withi
physical time unit varies according top(n)}(n11)212g.
Figure 1~b! illustrates this situation: Here we took 100 jump
from the realization shown in Fig. 1~a!, and rescaled each o
the corresponding time intervals to the unit length. The tic

FIG. 1. This figure illustrates the notion of operational time.~a!
Operational time leading to a Scher-Montroll CTRW. The ‘‘ticks
triggering the motion of the random walker~shown as bars above
the horizontal line! are taken from the set of ticks of a physic
clock according to a waiting-time distributionc(n)}(n11)212g

~shown as bars below the line!. The process shows long lacuna
see the text for details.~b! We now declare each interval betwee
the two moves of the random walker for a new time unit. The init
ticks of the physical clock now follow extremely inhomogeneous
and show intervals of high condensation. This kind of operatio
time leads to Le´vy flights.
4-5
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of initial clock ~shown as bars! follow inhomogeneously, and
show intervals of high concentration~but no lacunae!. The
number of such events grows superlinearly in time. The c
responding subordination transformation will be called
‘‘time-squeezing transformation’’~TST! of index g. The
process, subordinated to random walks under such an op
tional time, is superdiffusive, and corresponds to Le´vy
flights. Note that both the TST and TET are probability d
tributionsP(n,t) of the operational timen for a given physi-
cal time t, i.e., they are positive, integrable functions ofn.

Let us now combine the two processes. For example
us first generate a superlinear sequence using the algor
described above@with p(n)}(n11)212g], and then deci-
mate it randomly according to the waiting-time distributio
c(n)}(n11)212g. In this case the typical number of even
during a time intervalt grows linearly witht, but the corre-
sponding sequence of events is extremely inhomogene
showing both lacunae and accumulation intervals on
scales. This process is shown in a bar-code-like picture
Fig. 2. This will be discussed in more detail in Secs. VI a
VII. We can also proceed in other way, and apply the tra
formations oppositely, namely, first generating a sublinea
growing, lacunary operational time and then filling the lac
nae according to a Le´vy distribution. As we proceed to show
these two ways of constructing the event-time sets are
equivalent. The process, subordinated to a RW under suc
inhomogeneous operational time, is a kind of a continuo
time Lévy flight, and not a normal RW.

The example discussed above shows that transforma
leading to a sublinear or superlinear operational time beh
ior ~dual to each other in the sense described above! are not
the inverse of one another. Let us discuss the possibility
subordination transformation transforming a Le´vy-stable dis-
tribution of indexb ~for example, a Gaussian distribution!
into one with a distribution of indexg, in the sense that

L~ax;g,0!5E
0

`

n21/bL~x/n1/b;b,0!S~n,t !dn, ~24!

whereS(n,t) is supposed to be a probability distribution
the number of stepsn done up to timet. Taking Fourier
transform of both parts of Eq.~24!, and changing to a vari
ableu5ukub, we obtain

exp~2Auuua!5E
0

`

e2unS~n,t !dn, ~25!

FIG. 2. The operational time stemming from subordination
the two processes depicted in Fig. 1. Note that the bar-code-like
shows both intervals of high condensation and long lacunae.
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with a5g/b. From Eq.~25! it follows that S(n,t) are the
inverse Laplace transforms of the stretched exponen
exp(2Aua). Note that according to the Bernstein’s theore
a function f (x) is a Laplace transform of a probability dis
tribution if and only if it is completely monotonic@i.e., it is
infinitely differentiable and (21)nf (n)(x)>0 for all deriva-
tives f (n)] , and f (0)51. The last condition is always ful
filled. Note that according to criterion 2 discussed on p. 4
of Vol. II of Ref. @16#, a function f (x)5e2c(x) is a com-
pletely monotonic function if and only ifc is a positive
function with a completely monotonic derivative. In our ca
c(x)5Aua. For 0,a,1, one hasg(x)5c8(x)5Aaua21

.0, and the higher derivatives~defined on the interval 0
,x,`) are g8(x)5Aa(a21)ua22,0, g9(x)5Aa(a
21)(a22)ua23.0, g-(x)5Aa(a21)(a22)(a
23)ua23,0, etc., so that (21)ng(n)(x)>0; thus the func-
tion g is completely monotone. ThusS(n,t) is a probability
distribution~namely the one we have found above by expli
calculation!. On the other hand, fora.1 the functiong(x)
is not completely monotonic, so thatS(n,t) is not a prob-
ability distribution. Thus there is no random process wh
defines the operational time in such a way that the Le´vy
flight of indexa1 will be transformed into a Le´vy flight with
indexa2.a1. The absence of an inverse of a TST belongi
to a class of subordination transformations has a deep ph
cal interpretation: a TST is a coarse-graining procedure~see
Fig. 1!: information about the internal steps of the process
lost. One cannot anticipate that a transformation inverse
coarse-graining procedure belongs to the same class as
rect transformation.

Note also that the fact that the TET and TST are n
inverses of one another other is mirrored by the fact t
within the formalism based on the fractional Fokker-Plan
equations~FFPE’s!, the first one corresponds to an addition
fractionaltime derivativeon the left-hand side of the FFPE
while the second one is represented by a fractionalspatial
derivative; see Refs.@11,13,14,19#. Note also that the non
commutativity mentioned above shows that the order of
plication of these derivatives is fixed and cannot be ar
trarily changed.

VI. ‘‘PARADOXICAL’’ DIFFUSION

A process subordinated to a Le´vy CTRW under the TET
~a time transform leading to subdiffusive CTRW! was con-
sidered in detail in Ref.@11#. We now know that this proces
subordinates normal random walks under a combination
TST’s and TET’s of different indicesb andg. The overall
behavior of the process is superdiffusive forg,b and sub-
diffusive for g.b. This is easy to understand since the sc
ing considerations show that the operational time grows
perlinearly with physical time in the first case and that t
behavior is sublinear in the second case. Note that the in
m of the corresponding Le´vy flight is exactly 2b, so that this
behavior is exactly the one obtained in Ref.@11#. In the case
when b5g the operational time grows linearly with th
physical one: Ref.@11# suggests that it falls into the diffusio
universality class. On the other hand this diffusion is a ve
special one: We will call a process subordinated to RW

f
et
4-6
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under such an operational time paradoxical diffusion. T
random process defining an operational time stemming f
a combination of TST’s and TET’s of the same indexg has
interesting properties:n typically grows in proportion tot; on
the other hand, neither a well-defined density, nor a w
defined mean waiting-time, exists.

Let us first discuss the situation mentioned in the beg
ning of the section: a RW subordinated to a Le´vy-distributed
operational time, driven by a sublinear operational time. T
PDF of the corresponding random walks has power-law ta
exactly those of a Le´vy-distribution of indexg. On the other
hand, the overall width of the corresponding curve grows
L.At. Moreover, the whole distribution scales a as a fu
tion of dimensionless displacementj5x/L: the overall be-
havior is somewhat similar to one found on a polymer ch
with bridges. The overall form of the function can be fou
using the well-known expression forp(n,u), the Laplace
transform of the probabilityp(n,t), to make exactlyn steps
up to timet. Such a process corresponds to directed mo
under the same operational time as a CTRW. For the o
nary renewal process one hasp(n,u)5(1/u)@1
2c(u)#cn(u), with c(u).12ug @22#. Foru small (t large!
this form corresponds to

p~n,u!.ug21exp~2nug!. ~26!

Considering paradoxical diffusion as a process subordin
to Lévy flights of index 2g under operational time given b
p(n,t), we obtain forP(k,u), the Fourier-Laplace transform
of P(x,t):

Pg~k,u!5E
0

`

e2uku2anp~n,u!dn.
ug21

uku2g1ug
. ~27!

The scaling nature of the distribution is immediately evide
the nature of its power-law tails follows from the asympto
analysis fork small: The tail ofPg(j) stems from those o
L(x,2g,0), and has a power-law asymptoticsPg(j)
}j2122g (g,1). Note that such a distribution was obtain
in Ref. @11# as a solution of a fractional diffusion equatio
describing a random process incorporating Le´vy jumps tak-
ing place under a sublinear operational time. As an exam
let us consider the distributionP1/2(x,t), i.e., for g51/2.
This distribution has a simple analytical form, which can
obtained by an inverse Laplace-Fourier transformation of
~27!. The inverse Laplace transform of Eq.~27! is given in
Eq. ~3.21! of Ref. @23#, and reads P1/2(k,t)
5exp(k2t)erfc(ukut1/2). The inverse~cosine! Fourier trans-
form of this function is given by Eq.~10.6! of Ref. @24#, and
reads

P1/2~x,t !52
1

2At
p23/2exp~x2/4t !Ei~2x2/4t !, ~28!

where Ei(x) is the exponential integral; see Eq.~5.1.2! of
Ref. @18#. The corresponding function is a scaling function
j5 x/t1/2; its behavior forj large follows from asymptotic
expansion of2Ei(2x)5E1(x)5x21ex@121/x1•••#, so
that asymptoticallyP1/2(j) shows anj22-like tail, similar to
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one of Cauchy-distribution. Forj→0 the distribution
P1/2(k,t) shows a weak~logarithmic! singularity @following
from Eq.~5.1.11! of Ref. @18##, a sign of strong lacunarity o
the corresponding operational time. The asymptotic anal
of Eq. ~27! shows that such integrable singularities appea
the center of distribution for 0,g<1/2: the behavior forj
→0 is given byPg(j)}j2g21, for g51/2 Pg(j) diverges
logarithmically, as we already saw in Eq.~28!.

The distributionP1/2(j) is plotted in Fig. 3 together with
the Gaussian distribution@i.e., the distributionP1(j) of the
same class, the one corresponding to a normal diffusion# and
with the distribution stemming from the inverse order of a
plication of TET’s and TST’s to a simple diffusion, which i
discussed in detail in Sec. VII. All distributions are norma
ized in such a way that their quartiles coincide. Note that
quartiles ofP1/2(j) are situated at60.841.

VII. NONCOMMUTATIVITY OF TIME SUBORDINATION

Applying the transformations the other way around, i.
considering a process subordinated to a Scher-Mon
CTRW under Le´vy time, we obtain a process which is di
ferent from the one discussed above. Let us start wit
simple example.

Let us note that the TET of index 1/2~corresponding to an
inverse Laplace-transform of the functione2nAu/Au) is
given by

Q1/2~n,t !5
1

Apt
e2n2/4t, ~29!

i.e., corresponds to part of a Gaussian distribution forn.0,
so thatn typically grows ast1/2. The corresponding TST is
given by a distribution @Eq. ~18!#, R1/2(T,n)

FIG. 3. The PDF of the random walker’s positions for parado
cal diffusion. The PDF’s are plotted as functions of the dimensi
less variablez5x/Q, whereQ is the position of the upper quartile
of the corresponding distribution. The thick full line corresponds
RW under the subordination of a TST and a TET@Eq. ~28!#; the
dashed line corresponds to the inverse situation@Eq. ~34!#. The thin
full line represents a Gaussian distribution of the same width.
4-7
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5(n/2ApT3/2)e2n2/4T. The subordination of these two pro
cesses is described by a function

S1/2~T,t !5E
0

` 1

Apt
e2n2/4t

n

2ApT3/2
e2n2/4Tdn

5
2

pt
A t

T
S T

t
11D 21

, ~30!

which is a probability distribution with the tail decaying a
T23/2 ~as a tail of a stable distribution of index 1/2!, and with
the square-root singularity at zero. Note that this distribut
is just a solution of a fractional Liouville equation describin
directed motion under such an operational time, just as
~28! is the solution of a fractional diffusion equation. This
a process subordinated to a Le´vy one under sublinear time
growth.

We now show thatQ andR distributions leading to para
doxical diffusion are not commutative: An operatational tim
resulting from anRQ transformation has a different distribu
tion from one stemming from aQR one. For example, the
distribution S1/2(T,t) given by Eq.~30! is S1/2(T,t)5Q* R
5*Q(n,t)R(T,n)dn. Let us calculate a conjugated distrib
tion S1/2* (T,t)5R* Q5*R(n,t)Q(T,n)dn, describing a pro-
cess subordinated to a sublinear growth under the operat
time growing according to a Le´vy distribution. The distribu-
tion S1/2* (T,t) is given by

S1/2* ~T,t !5E
0

` 1

Apn
e2T2/4n

t

2Apn3/2
e2t2/4ndn5

2t

p

1

t21T2
,

~31!

i.e., corresponds to the positive part of a Cauchy distribut
Note that even such a robust scaling property of a probab
distribution as a nature of its power-law tail is different fro
one for its conjugated counterpart.

The plausible scaling consideration here is as follow
The distributionQ(T,n) has all moments, so that forn large
the value ofT is well defined, and is of the order ofna, a
,1. On the other hand, the distribution ofn as a function of
t is broad and shows a power-law tailP(n,t)
}t21/a(n/t1/a)212a}tn212a. Now changing the variable
from n to T}na, we obtain the asymptotics of the PDF ofT
in a form P(T,t)}tT22, independently ofa. We thus note
that the probability distribution subordinating a subline
continuous-time directed motion under the Le´vy-distributed
operational time of the same index has a power-law tail
caying asT22, i.e., is similar to a Cauchy distribution.

The process subordinated to a Gaussian RW, unde
operational time defined byS1/2* (T,t), is also not a norma
diffusion, but represents a marginal situation of a distribut
whose second moment diverges logarithmically. The co
sponding PDF shows power-law tails of ax23 type. This
PDF is given by

P1/2* ~x,t !5E
0

` 1

A2pT
e2x2/2T

2t

p

1

t21T2
dT. ~32!
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Changing to a new variablez5x2/2T, and then introducing a
scaling variablej5x/At, we obtain the PDFP(x,t) as a
scaling function ofj:

P1/2* ~j!5
1

p3/2
uju E

0

` z1/2e2z

z21j4/4
dz. ~33!

For j large the corresponding integral decays as (2/p)j23.
Note that Eq.~33! can be expressed in terms of Fresnel s
and cosine integralsS(x) and C(x), so thatP(j) can be
obtained in a closed form:

P1/2* ~j!5
1

Ap
H sinS j2

2 D F122SS uju

Ap
D G

1cosS j2

2 D F122CS uju

Ap
D G J ; ~34!

see Eq.~2.3.7.10! of Ref. @25#. The corresponding distribu
tion is also plotted in Fig. 3 as a dashed line. Note that
distribution shows a cusp singularity atj50. The value of
P(j) in this point is 1/Ap50.564 . . . . Thequartiles of this
distribution are situated at60.621.

VIII. RELAXATION PHENOMENA UNDER TEMPORAL
SUBORDINATION

The fact that the Le´vy dynamics can follow from a tem
poral subordination is important if one wants to analyze
possible thermodynamical implications of the Le´vy-flight
transport. Imagine an ensemble of thermodynamical syst
~say Brownian particles in a harmonic potential! which was
put out of equilibrium and then allowed to relax. As di
cussed in Sec. II, such relaxation will lead to a station
state corresponding to a normal equilibrium Boltzmann d
tribution. Since this distribution is time independent,
would not change under temporal subordination, so that s
tems with Lévy dynamics may have very ordinary therm
dynamical equilibrium states, and thus be described by n
mal Gibbs-Boltzmann entropy. The non-Boltzmann nature
the equilibrium found in Ref.@19# was connected with the
fact that the linear response was considered, as propose
Ref. @20#, an assumption at variance with the findings of S
IV. Let us now discuss the relaxation to this equilibrium.

A system slightly outside of equilibrium can be consi
ered as evolving under the influence of the linear restor
force. In the operational time of the system~marked by the
numbern of jumps! this relaxation will be described by
Fokker-Planck equation. For an overdamped particle in
harmonic potential we obtain, for example,

]P

]n
5

]

]x S gkxP1D
]

]x
PD . ~35!

Note that the values ofg andD fulfill Einstein’s relationg
5D/kT. The Green’s function of Eq.~35! has a form of a
Gaussian distribution, and reads
4-8
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G~x,nux0 ,n0!5A g

2pD~12e22g(n2n0)!

3expS 2
gk~x2e2g(n2n0)x0!2

2D~12e22g(n2n0)!
D ;

~36!

see Sec. 5.4 of Ref.@26#. This equation gives us, e.g., th
PDF at a timen in a system, in which the particles were a
situated atx5x0 at n5n0. It is easy to see that the first tw
central momentsM15^x& andM25^(x2^x&)2& relax expo-
nentially to their equilibrium values, so that

^x~n!&5x0exp~2t21n! ~37!

and

s2~n!5
D

kg
@12exp~22t21n!#, ~38!

being a typical pattern of relaxation of a system with on
one relaxation timet5(kg)21. Since all higher moments o
a Gaussian distribution are the combinations of the low
two, they also relax to their equilibrium values in a~multi-
!exponential fashion. Let us start from the Fourier-transfo
of Eq. ~36!, and note that under subordination

P~k,t !5E exp@2 ikx8e2gn2Dk2~12e22gn!/2g#

3t21/aL~n/t1/a,a,2a!dn. ~39!

Let us moreover expand the exponential term in a Tay
series ink: the coefficients of this series give the moments
the corresponding distribution. From Eq.~39! it follows then
that thei th moment is a combination of integrals of the ty

F~ t !5E
0

`

exp~2ln!t21/aL~n/t1/a,a,2a!dn, ~40!

with l5mg, 0<m< i . Using the fact that a Laplace tran
form of a fully asymmetric Le´vy distribution is a stretched
exponential function, we obtain:

F~ t !5exp@2A~lt1/a!a#5exp~2Alat !. ~41!

This means that the exponential relaxation under Le´vy dy-
namics remains a simple exponential relaxation~only the
corresponding relaxation time changes!. For example, the
first moment of the distribution~the particle’s position! still
relaxes exponentially to its equilibrium value of zero. On t
other hand, the dependence of the relaxation time on
outer parameters~say, temperature! entering through the val
ues ofg andD can change considerably. Thus the superd
fusive Lévy-flight dynamics in the force-free case can coe
ist with standard thermodynamics and with very simp
relaxation patterns, as far as the case of a harmonic forc
concerned.
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Let us consider the relaxation in a harmonic potential u
der ’’paradoxical’’ diffusion. Here again we can use the m
ment expansion@Eq. ~39!#, and set down an expression fo
the characteristic function of the overall distribution:

P~k,t !5E exp@2 ikx8e2gn2Dk2~12e22gn!/2g#

3Sa~n,t !dn. ~42!

Note that the moments of the corresponding distribution
combinations of the functions:

F~ t !5E
0

`

exp~2lT!Sa~T,t !dT. ~43!

Note thatSa(n,t) is a PDF of a process subordinated to
Lévy distribution under a TET:

Sa~T,t !5E dtt21/aLa~T/t1/a,a,2a!Qa~t,t !dt.

~44!

Thus a Laplace transform ofS, according to its outer time
variable, is a stretched-exponential, so that

F~ t !5E
0

`

p~t,t !exp~2Alat!dt. ~45!

Let us take a Laplace transform of this expression. Using
~26!, we obtain

F~u!5E
0

`

ua21exp~2tua!exp~2Alat!dt5
ua21

ua1Ala
.

~46!

For smallu ~long times! this corresponds to a power-law
decay ofF(t) of a form F(t)}t2a for t@l21. Thus the
relaxation in the case of paradoxical diffusion resemb
those in normal CTRW, and is dominated by large lacun
In the case when the processes are subordinated the
way around, i.e., according toSa* (T,t), the decay at longer
times follows the universalt21-law: for example, fora
51/2, we obtain

F~ t !5
2t

p E
0

`

exp~2lT!
1

t21T2
dT

5
2l

p
@sin~lt !ci~lt !2cos~lt !si~lt !#, ~47!

see Eq.~2.3.7.11! of Ref. @25# @here the integral sine an
cosine functions, si(x)52*x

`(sinx/x)dx and ci(x)
52*x

`(cosx/x)dx, are used#. For lt@1, we obtain

F~ t !.
2

p
~lt !21, ~48!

the asymptotic behavior which is universal for all Le´vy-
driven CTRW’s of the same index.
4-9
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IX. CONCLUSIONS

A broad range of physical processes can be describe
processes subordinated to a random walk under some o
tional time. In particular, such a subordination leads
anomalous transport properties, a well-known example be
the Scher-Montroll continuous-time random walks, a proc
in which the operational time~given by the number of steps!
is sublinear in the physical timet. Here we have considere
the processes subordinated to a diffusive process unde
operational time governed by a Le´vy distribution with index
0,a,1; that is, the operational time is superlinear in phy
cal one. We have shown that in the absence of outer fo
this subordination leads exactly to Le´vy flights. The response
of such a system to a weak outer force is strongly nonline
Interestingly enough, the relaxation patterns in such syst
are simpler than expected. Thus we show that the behavi
the presence of a weak harmonic force corresponds
simple exponential relaxation to a normal Boltzmann dis
a

ys

r,

ev
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bution. The combination of superlinear- and sublinear ope
tional times~i.e., Lévy flights under a sublinear operation
time or a Scher-Montroll CTRW under Le´vy time! corre-
sponds to ‘‘paradoxical’’ diffusion, a random process whi
in a force-free case leads to probability distributions of t
particle’s displacements, which show the power-law tails a
lack a second moment. The width of the distribution, on
other hand, grows proportionally to the square root of
time, showing a typically diffusive behavior. Some physic
implications of these findings have been discussed.

ACKNOWLEDGMENTS

The author is indebted to S. Jespersen, Professor A.
men, and Professor J. Klafter for fruitful discussions. Fina
cial support by the Deutsche Forschungsgemeinsc
through the SFB 428 and by the Fonds der Chemischen
dustrie is gratefully acknowledged.
-

s

r

@1# H. Scher and E. W. Montroll, Phys. Rev. B12, 2455~1975!.
@2# J. Klafter, M. F. Shlesinger, and G. Zumofen, Phys. Tod

49~2!, 33 ~1996!.
@3# O. V. Bychuk and B. O’Shaughnessy, Phys. Rev. Lett.74,

1795 ~1994!; J. Chem. Phys.101, 772 ~1994!.
@4# A. Ott, J.-P. Bouchaud, D. Langevin, and W. Urbach, Ph

Rev. Lett.65, 2201~1994!.
@5# I. M. Sokolov, J. Mai, and A. Blumen, Phys. Rev. Lett.79, 857

~1997!; J. Lumin.76-77, 377 ~1998!.
@6# J. Klafter, A. Blumen, G. Zumofen, and M. F. Shlesinge

Physica A168, 637 ~1990!.
@7# M. Bologna, P. Grigolini, and J. Riccardi, Phys. Rev. E60,

6435 ~1999!.
@8# P. Santini, Phys. Rev. E61, 93 ~2000!.
@9# T. H. Solomon, E. R. Weeks, and H. L. Swinney, Phys. R

Lett. 71, 3975~1993!.
@10# W. D. Luedtke and U. Landman, Phys. Rev. Lett.82, 3835

~1999!.
@11# H. C. Fogedby, Phys. Rev. E50, 1657~1994!.
@12# E. W. Montroll and G. H. Weiss, J. Math. Phys.6, 167~1965!.
@13# Application of Fractional Calculus in Physics, edited by R.

Hilfer ~World Scientific, Singapore, 2000!.
@14# R. Metzler, J. Klafter, and I. M. Sokolov, Phys. Rev. E58,

1621 ~1998!.
y

.

.

@15# E. Barkai, R. Metzler, and J. Klafter, Phys. Rev. E61, 132
~2000!.

@16# W. Feller, An Introduction to Probability Theory and Its Ap
plications ~Wiley, New York, 1971!, Vols. I and II.

@17# S. Glarum, J. Chem. Phys.33, 639 ~1960!.
@18# Handbook of Mathematical Functions, edited by M. Abramo-

vitz and I. A. Stegun~Dover, New York, 1972!.
@19# S. Jespersen, R. Metzler, and H. C. Fogedby, Phys. Rev. E59,

2736 ~1999!.
@20# H. C. Fogedby, Phys. Rev. Lett.73, 2517~1994!; Phys. Rev. E

58, 1690~1998!.
@21# J.-P. Bouchaud and A. Georges, Phys. Rep.195, 127 ~1990!.
@22# A. Blumen, J. Klafter, and G. Zumofen, inOptical Spectros-

copy of Glasses, edited by I. Zschokke~Reidel, Dordrecht,
1986!.

@23# F. Oberhettinger and L. Badii,Tables of Laplace Transform
~Springer, New York, 1973!, p. 229.

@24# F. Oberhettinger,Tables of Fourier Transforms and Fourie
Transforms of Distributions~Springer, Berlin, 1980!, p. 49.

@25# A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,Inte-
grals and Series~Nauka, Moscow, 1981!.

@26# H. Risken, The Fokker-Planck Equation~Springer, Berlin,
1984!.
4-10


